Abstract
Mathematical representations of brain networks in neuroscience through the use of graph theory may be very useful for the understanding of neurological diseases and disorders and such an explanatory power is currently under intense investigation. Graph metrics are expected to vary across subjects and are likely to reflect behavioural and cognitive performances. The challenge is to set up a framework that can explain how behaviour, cognition, memory, and other brain properties can emerge through the combined interactions of neurons, ensembles of neurons, and larger-scale brain regions that make information transfer possible. "Hidden" graph theoretic properties in the construction of brain networks may limit or enhance brain functionality and may be representative of aspects of human psychology. As theorems emerge from simple mathematical properties of graphs, similarly, cognition and behaviour may emerge from the molecular, cellular and brain region substrate interactions. In this review report, we identify some studies in the current literature that have used graph theoretical metrics to extract neurobiological conclusions, we briefly discuss the link with the human connectome project as an effort to integrate human data that may aid the study of emergent patterns and we suggest a way to start categorizing diseases according to their brain network pathologies as these are measured by graph theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.