Abstract

It is thought that disulfide bonds in secreted proteins are inert because of the oxidizing nature of the extracellular milieu. We have suggested that this is not necessarily the case and that certain secreted proteins contain one or more disulfide bonds that can be cleaved and that this cleavage is central to the protein's function. This review discusses disulfide bond cleavage in the secreted soluble protein, plasmin. Cleavage of plasmin disulfide bond(s) triggers peptide bond cleavage and formation of the tumour angiogenesis inhibitor, angiostatin. Tumour cells secrete phosphoglycerate kinase which facilitates cleavage of the plasmin disulfide bond(s). Phosphoglycerate kinase is not a conventional disulfide bond reductase. We propose that phosphoglycerate kinase facilitates cleavage of a particular plasmin disulfide bond by hydroxide ion, which results in formation of a sulfenic acid and a free thiol. The free thiol is then available to exchange with another nearby disulfide bond resulting in formation of a new disulfide and a new free thiol. The reduced plasmin is then susceptible to discreet proteolysis which results in release of angiostatin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call