Abstract

A future hydrogen economy requires the sustainable production of renewable hydrogen. One method to produce hydrogen from stored renewable energy could be through reformation of bioethanol. However, chemically catalyzed reformation processes, although well studied, still present a number of significant technical challenges. Here, bioreformation of ethanol to hydrogen by photofermentation with the photosynthetic bacterium Rhodopseudomonas palustris is described. Cultures were shown to tolerate up to 2% ethanol. An RSM (response surface methodology) was carried out in which three key factors, light intensity, and ethanol and glutamate concentrations were varied. The results showed that nearly 2mol of H2 could be obtained from one mole of ethanol, 33% of that theoretically possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.