Abstract

Despite the fact that β-glucans are well-established immunomodulators, the problems with batch-to-batch heterogeneity remains problematic. The aim of this study was to prepare and evaluate new type of synthetic oligosaccharides. A new family of oligo-(1 → 3)-β-d-glucans modified on the reducing end was synthesized using a controlled and specific inversion of configuration at C-2 starting from already formed oligo-(1 → 3)-β-d-glucans. The designed glycosides are characterized by the presence of four or five glucopyranose entities and a mannose residue at the reducing end. To study of the impact of well-defined structural modulations, we used murine and human models to evaluate their immunostimulating potential. These novel oligosaccharides showed strong and long-lasting stimulation of phagocytosis and significant potentiation of synthesis and/or secretion of interleukin (IL-2, IL-4, IL-5, IL-6), tumor necrosis factor-α, and vascular endothelial growth factor. In addition, the oligosaccharides tested showed significant effects on expression of several genes in human fibroblasts and breast cancer cells. From our results it is clear that these synthetic oligosaccharides represent a better alternative to natural β-glucans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.