Abstract

Rhizoma Coptidis is a widely cultivated traditional Chinese herb. Although the chemical profiles of Rhizoma Coptidis have been established previously, the biological profiling of Rhizoma Coptidis has not been conducted yet. In this study, we collected Rhizoma Coptidis varieties from four distinct growing regions and performed genome-wide biological response fingerprinting (BioReF) on HepG2 cells using a gene expression array. Similar biological pathways were affected by extracts of all four Rhizoma Coptidis varieties but not by their analogue, Mahoniae Caulis. Among these pathways, the terpenoid backbone biosynthesis pathway was highly enriched, and six genes in the mevalonate (MVA) pathway were all down-regulated. However, the expression, maturation, as well as the specific DNA binding capacity of their coordinate transcription factor, sterol response element binding protein 2 (SREBP2), was not affected by Rhizoma Coptidis extract (RCE) or its typical active alkaloid berberine. Cellular cholesterol content tests further verified the cholesterol-lowering function of RCE in vitro, which supplements evidence for the use of Rhizoma Coptidis in hyperlipidemia treatment. This is the first described example of evaluating the quality of Rhizoma Coptidis with BioReF and a good demonstration of using BioReF to uncover the mechanisms of herbs at a systematic level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.