Abstract

One research goal for unnatural base pair (UBP) is to replicate, transcribe and translate them in vivo. Accordingly, the corresponding unnatural nucleoside triphosphates must be available at sufficient concentrations within the cell. To achieve this goal, the unnatural nucleoside analogues must be phosphorylated to the corresponding nucleoside triphosphates by a cascade of three kinases. The first step is the monophosphorylation of unnatural deoxynucleoside catalyzed by deoxynucleoside kinases (dNK), which is generally considered the rate limiting step because of the high specificity of dNKs. Here, we applied a Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) to the phosphorylation of an UBP (a pyrimidine analogue (6-amino-5-nitro-3-(1’-b-d-2’-deoxyribofuranosyl)-2(1H)-pyridone, Z) and its complementary purine analogue (2-amino-8-(1’-b-d-2’-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, P). The results showed that DmdNK could efficiently phosphorylate only the dP nucleoside. To improve the catalytic efficiency, a DmdNK-Q81E mutant was created based on rational design and structural analyses. This mutant could efficiently phosphorylate both dZ and dP nucleoside. Structural modeling indicated that the increased efficiency of dZ phosphorylation by the DmdNK-Q81E mutant might be related to the three additional hydrogen bonds formed between E81 and the dZ base. Overall, this study provides a groundwork for the biological phosphorylation and synthesis of unnatural base pair in vivo.

Highlights

  • Genetic alphabet expansion with unnatural base pairs (UBPs) represents an important embranchment of chemical synthetic biology and is a key focus of synthetic biology [1]

  • Because of the broad substrate specificity and the high catalytic efficiency, the structure and function of Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) have been intensively investigated by many researchers

  • Our results showed that the wild-type DmdNK was able to efficiently phosphorylate the natural dC and dG and unnatural dP nucleosides, whereas the phosphorylation of the dZ nucleoside was less efficient

Read more

Summary

Introduction

Genetic alphabet expansion with unnatural base pairs (UBPs) represents an important embranchment of chemical synthetic biology and is a key focus of synthetic biology [1]. In May 2014, Romesberg FE and his colleagues reported an engineered semi-synthetic bacterium whose genetic material included a d5SICS-dNaM unnatural base pair [14]. This bacterium could continually replicate an UBP under the supply of artificial molecular building blocks (d5SICS and dNaM). This study was a breakthrough in chemical synthetic biology because it was the first to replicate the artificially expanded genetic alphabet from in vitro to in vivo

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call