Abstract

The continuous aerobic biodegradation of phenol in synthetic wastewater was carried out using Nocardia hydrocarbonoxydans immobilized over glass beads packed between the plates in a pulsed plate bioreactor at a frequency of pulsation of 0.5 s −1 and amplitude of 4.7 cm. The influence of dilution rate and influent phenol concentration on start up and steady state performance of the bioreactor was studied. The time taken to reach steady state has increased with increase in dilution rate and influent phenol concentration. It was found that, as the dilution rate is increased, the percentage degradation has decreased. Steady state percentage degradation was also reduced with increased influent phenol concentration. Almost 100% degradation of 300 and 500 ppm influent phenol could be achieved at a dilution rate of 0.4094 h −1 and more than 99% degradation could be achieved with higher dilution rates. At a higher dilution rate of 1.0235 h −1 and at concentrations of 800 and 900 ppm the percentage degradation has reduced to around 94% and 93%, respectively. The attached biomass dry weight, biofilm thickness and biofilm density at steady state were influenced by influent phenol concentration and dilution rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.