Abstract

Biological nutrient removal processes involving the use of activated sludge (AS) to treat municipal wastewater normally result in high aeration energy consumption and significant greenhouse gas (GHG) emissions. Therefore, developing cost-efficient and environmentally friendly processes for wastewater treatment is vital. In this work, a novel non-aerated microalgal-bacterial membrane photobioreactor (MB-MPBR) was proposed, and its feasibility for organic contaminant and nutrient removals was evaluated, for the first time. The effects of inoculation ratio (microalgae to bacteria (M/B)) on the biological performance and membrane fouling were systematically investigated. The results showed that 95.9% of the chemical oxygen demand (COD), 74.5% of total nitrogen (TN), 98.5% of NH4+-N and 42.0% of total phosphorus (TP) were removed at an inoculation M/B ratio of 3:2 at steady state, representing a significant improvement compared to the M/B inoculation ratio of 1:3. Additionally, the higher inoculation M/B ratio (3:2) significantly promoted the biomass production owing to the favorable mutual exchange of oxygen and carbon dioxide between microalgae and bacteria. Cake layer formation was the primary fouling mechanism owing to the absence of aeration scouring on the membrane surface. The membrane fouling rate was slightly higher at the higher inoculation ratio (M/B = 3:2) owing to the increased biomass and extracellular polymeric substances (EPS) productions, despite the larger particle size. These results demonstrated that the non-aerated MB-MPBR could achieve superior biological performance, of which the inoculation M/B ratio was of critical importance for the initiation and maintenance of microalgal-bacterial symbiotic system, yet possibly caused severer membrane fouling in the absence of external aeration and carbonation. This study provides a new perspective for further optimizing and applying non-aerated MB-MPBR to enhance municipal wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.