Abstract

Utilization of waste resources is necessary to harness the long-term sustainability of algal technology. The study focused on the use of human urine as the basic nutrient source for culturing native microalgal consortium and further optimized the process parameters using response surface methodology. A full factorial, central composite rotatable design (CCRD) with three variables: urine concentration (1–10% vol of urine/vol of distil water [%v/v]), pH (6.5–9) and light intensity (50–350 μmolphotonsm−2sec−1) was used to evaluate the microalgal biomass and lipid content. Results indicated that at 95% confidence limits, the selected factors influence the biomass and lipid productivity. The maximum biomass productivity of 211.63 ± 1.40 mg l−1 d−1 was obtained under optimized conditions with 6.50% v/v of urine, pH of 7.69 and at light intensity of 205.40 μmolphotonsm−2sec−1. The lipid content was found to increase from 18.96 ± 1.30% in control media to 26.27 ± 1.94% under optimal conditions. The interactive effect of variables over the microalgal biomass and lipid content has also been elucidated. The data obtained were comparable to the BG11 media (control). Optimized diluted urine media in the presence of ammonium ions and under limited nitrate showed better lipid yields. Significant lipid biomolecules were detected in the algal oil extracts obtained from the diluted urine media characterized by Fourier transform infrared spectroscopy (FTIR) and Nuclear magnetic resonance (NMR). Gas chromatography-mass spectrometry (GCMS) revealed the presence of several monounsaturated and polyunsaturated fatty acids in the transesterified algal oil. Such studies would aid in technically realizing the field scale cultivation of microalgae for biofuels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.