Abstract

In this study a biological nitrogen removal process using a submerged fixed-film reactor was applied to treat industrial wastewater with phenol (1 g/l), a high nitrogen concentration (0.4 g N/l) and high salinity (30 g/l). The process consisted of a pre-denitrification system with a down-flow-up-flow biofilter (two columns, each with an effective volume of 21 l) packed with clayey schists from recycled construction material. The efficiency of the system for reducing COD, phenol concentration and total nitrogen was tested under different running conditions such as influent flow (10, 12 and 15 l/d), air loading (6.8 and 13.6 m 3/m 2 h) and effluent recirculation (300%, 400%, and 600%). The system demonstrated a high capacity for reducing COD concentration (95.75 ± 0.72%), independently of running conditions. The aerobic column eliminated most of the phenol in the influent. Nitrogen removal took place mainly in the anoxic column, and was conditioned by the air loading in the aerated column, owing to the dependence of nitrification on the supply of oxygen. However, this process was not able to achieve a nitrogen oxidation superior to 63%, in spite of a sufficient supply of oxygen and the diluting effect of high recirculation (600%) on the phenol concentration in the influent. In spite of the limitations observed in the process of nitrification, results for the removal of total nitrogen were as high as 83%, owing to a combination of different processes for nitrogen removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.