Abstract

The repertoire of transcripts encoded by the genome contributes to the diversity of cellular states. Functional genomics aims to comprehensively uncover the roles of these transcripts to reconstruct biological networks and transform this information into useful knowledge. High-throughput functional screening has served as a powerful genetic discovery tool by enabling massively parallel implementation of biological assays. In recent years, high-throughput screening has unearthed crucial players in the regulation of different aspects of pluripotency, which is a unique property that enables a cell to differentiate into multiple cell types of the three major lineages. Pluripotency thus represents an interesting biological paradigm for studying the acquisition, maintenance, and dissolution of cellular states. In this review, we highlight the major findings of high-throughput studies to dissect these three aspects of pluripotency for the mouse and human systems. Collectively, they provide new insights into cell fate maintenance and transition. In addition, we also discuss the opportunities and challenges awaiting high-throughput screening in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call