Abstract

WRKY transcription factor (TF) is plant specific genes and play essential roles involved in biotic and abiotic stress tolerance. Gene co-expression network (GCN) analysis is effective tool for the interpretation of transcriptomic data. In this study, a co-expression network of 152 WRKY genes using publicly available microarray data (GSE78242) was constructed under low phosphate (Pi) treatment in soybean (Glycine max). A total of 149 nodes and 641 edges were obtained from CGN and seven seed genes were identified. Particularly, Glyma.19G094100 and Glyma.16G054400 seed genes (orthologue to Arabidopsis WRKY75) were found to have a direct connection to P deficiency. Promotor analyses of seed genes revealed the variations in the number of cis-regulatory elements (CREs) ranging from 80 to 137 with a total of 835 CREs. The methylation profile of Glyma.04G218700 (orthologue to Arabidopsis WRKY51) was found higher than other seed genes. As a result, our findings can be used as a scientific basis to cope with P deficiency in soybean as well as abiotic stress tolerance. In addition, these findings of this study may prove the crop improvement studies in future, especially genetically engineered soybean plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.