Abstract

Hierarchical MAX model (HMAX) is a bio-inspired model mimicking the visual information processing of visual cortex. However, the visual processing of lower level, such as retina and lateral geniculate nucleus (LGN), is not concerned, and the properties of higher-level neurons are not sufficiently specified. Given that, we develop an extended HMAX model, denoted as E-HMAX, by the following biologically plausible ways. First, contrast normalization is conducted on the input image to simulate the processing of human retina and LGN. Second, log-polar Gabor (GLoP) filters are used to simulate the properties of V1 simple cells instead of Gabor filters. Then, sparse coding on multi-manifolds is modeled to compute the V4 simple cell response instead of Euclidean distance. Meanwhile, a template learning method based on dictionary learning on multi-manifolds is proposed to select informative templates during template learning stage. Experimental results demonstrate that the proposed model has greatly outperformed the standard HMAX model. It is also comparable to some state-of-the-art approaches such as EBIM and OGHM-HMAX.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.