Abstract
Small pelagic fish account for more than 30% by weight of the total landings of marine fisheries in Japan and around the world. Their population dynamics have tended to be dramatic and cyclical in response to climate variability on multi-decadal time scales. However, the biological mechanisms linking climate variability to population dynamics are still unresolved. This chapter reviews the biological mechanisms underlying climate impacts on the population dynamics of small pelagic fish, taking examples from the species alternations between anchovy and sardine in the Kuroshio Current system. First, the chapter examines how environmental variability regulates the survival probability of small pelagic fish, highlighting the role of vital parameters such as growth rate and physiological condition as an amplifier linking subtle changes in environmental variables to dramatic changes in the population dynamics. Then, the chapter introduces hypotheses for the biological mechanism of species alternation, showing how environmental conditions differently affect the population dynamics of different small pelagic fish species. Lastly, recommendations for future research directions are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.