Abstract

Enamel fluorosis can occur following either an acute or chronic exposure to fluoride during tooth formation. Fluorosed enamel is characterized by a retention of amelogenins in the early-maturation stage, and by the formation of a more porous enamel with a subsurface hypomineralization. The mechanisms by which fluoride affects enamel development include specific effects on both the ameloblasts and on the developing enamel matrix. Maturation-stage ameloblast modulation is more rapid in fluorosed enamel as compared with control enamel, and proteolytic activity in fluorosed early-maturation enamel is reduced as compared with controls. Secretory enamel appears to be more susceptible to the effects of fluoride following acute fluoride exposure, such as may occur with the use of fluoride supplements. However, both human and animal studies show that the transition/early-maturation stage of enamel formation is most susceptible to the effects of chronic fluoride ingestion at above-optimal levels of fluoride in drinking water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call