Abstract

The indole side chain of tryptophan has latent nucleophilic reactivity at both N1 and all six (nonbridgehead) carbons, which is not generally manifested in post-translational reactions of proteins. On the other hand, all seven positions can be prenylated by the primary metabolite Δ(2)-isopentenyl diphosphate by dimethyallyl transferase (DMATs) family members as initial steps in biosynthetic pathways to bioactive fungal alkaloids including ergots and tremorgens. These are formulated as regioselective capture of isopentenyl allylic cationic transition states by the indole side chain as a nucleophile. The balance of regiospecificity and promiscuity among these indole prenyltransferases continues to raise questions about possible Cope and azaCope rearrangements of nascent products. In addition to these two electron reaction manifolds, there is evidence for one electron reaction manifolds in indole ring biosynthetic functionalization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.