Abstract

Biological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technologies facilitate the monitoring of expression levels over thousands of biological units over time. Several experimental efforts have appeared aiming to unveiling pairwise interactions, with many graphical models being introduced in order to discover associations from expression-data analysis. However, the small size of samples compared to the number of observed genes/proteins makes the inference of the network structure quite challenging. In this study, we generate gene–protein networks from sparse experimental temporal data using two methods, partial correlations and Kernel Density Estimation (KDE), in an attempt to capture genetic interactions. Applying KDE method we model the genetic associations as Gaussians approximations, while through the dynamic Gaussian analysis we aim to identify relationships between genes and proteins at different time stages. The statistical results demonstrate valid biological interactions and indicate potential new indirect relations that deserve further biological examination for validation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.