Abstract
Automatic processing large amount of microscopic images is important for medical and biological studies. Deep learning has demonstrated better performance than traditional machine learning methods for processing massive quantities of images; therefore, it has attracted increasing attention from the research and industry fields. This paper summarizes the latest progress of deep learning methods in biological microscopic image processing, including image classification, object detection, and image segmentation. Compared to the traditional machine learning methods, deep neural networks achieved better accuracy without tedious feature selection procedure. Obstacles of the biological image analysis with deep learning methods include limited training set and imperfect image quality. Viable solutions to these obstacles are discussed at the end of the paper. With this survey, we hope to provide a reference for the researchers conducting biological microscopic image processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.