Abstract

Primary implant stability is ensured by a mechanical fixation of implants. However, during implant healing a biological anchorage is necessary to achieve final osseointegration. Aim of this study was to investigate the histological aspects of biological fixation around titanium screws. Forty-eight titanium screws with different surfaces (smooth, plasma sprayed, sand blasted) were inserted in tibiae and femura of sheep and analyzed by light microscope and SEM 1 hour, 14 and 90 days after implantation. One hour after implantation the implant-bone gap was filled with a blood clot and host bone chips arising from burr surgical preparation or friction during implant insertion. Fourteen days after implantation new trabecular bone and enveloped bone chips were observed in the gap: no osteogenesis developed where implant threads were in contact with host bone. Ninety days after surgery all trabecular bone and most of the bone chips were substituted by a mature lamellar bone with few marrow spaces. Our results suggest that the trabecular bone and bone chips represent a three-dimensional network ensuring a biological implant fixation in all different implant surfaces 2 weeks after surgery. Host bone chips could favour the peri-implant osteogenesis. Inter-trabecular and implant-trabecular marrow spaces of both trabecular and lamellar bone may favour the peri-implant bone turnover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.