Abstract

Xanthene and thioxanthene analogues have been investigated for their potential as anticancer and anti-inflammatory agents. Additionally, cysteine analogues have been found to possess antioxidant, anti-inflammatory, and anticancer activities due to their role in cellular redox balance, scavenging of free radicals, and involvement in nucleophilic reactions and enzyme binding sites. In this study, we synthesized a library of tertiary alcohols derived from xanthene and thioxanthene, and further, some of these compounds were coupled with cysteine. The objective of this research was to explore the potential anticancer, antioxidant, and anti-inflammatory activities of the synthesized compounds. The synthesized compounds were subjected to test for anticancer, antioxidant, and anti-inflammatory activities. Results indicated that compound 3 exhibited excellent inhibition activity (IC50 = 9.6 ± 1.1 nM) against colon cancer cells (Caco-2), while compound 2 showed good inhibition activity (IC50 = 161.3 ± 41 nM) against hepatocellular carcinoma (Hep G2) cells. Compound 4 demonstrated potent antioxidant inhibition activity (IC50 = 15.44 ± 6 nM), and compound 7 exhibited potent anti-inflammatory activity with cyclooxygenase-2 (COX-2) inhibition IC50 (4.37 ± 0.78 nM) and high selectivity for COX-2 (3.83). In conclusion, certain synthesized compounds displayed promising anticancer activity and anti-inflammatory effects. Nevertheless, additional research is necessary to create more analogues, develop a more distinct comprehension of the structure-activity relationship (SAR), and perform in vivo experiments to evaluate the pharmacokinetic and pharmacodynamic characteristics of the compounds under examination. Such research may pave the way for the development of novel therapeutic agents with potential applications in cancer and inflammatory diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.