Abstract
Since its approval by the FDA, Abraxane™ has been established as a clinical standard of paclitaxel (PTX)-based therapy against a variety of cancers. Despite success, Abraxane™ is still limited by suboptimal biodistribution, unfavorable pharmacokinetics and chronic toxicities from chloroform used during preparation. Accordingly, a PTX-loaded nanosuspension based on human serum albumin (HSA) with PEG modifiers (PTX-PEG-HSA) has been developed to optimize the in-vivo biodistribution, pharmacokinetics and safety of PTX over traditional PTX-HSA nanosuspensions prepared using the accepted method for Abraxane™. Results of in-vivo pharmacokinetic (PK) studies indicated PTX-PEG-HSA achieved prolonged blood circulation, illustrated by an 8.8-fold and 4.8-fold increase in area-under-the-curve (AUC) of PTX over Taxol® and PTX-HSA, while the mean residence time (MRT) of PTX in PTX-PEG-HSA was increased by 3.2-fold and 1.5-fold, respectively. HSA mediated active targeting further suppressed non-specific distribution of PTX to normal tissues, which permitted enhanced antitumor efficacy in S180 mice over Taxol® and PTX-HSA. Safety of intravenously administered PTX-PEG-HSA was confirmed through lower hemolytic activity, a 2.2-fold and 1.2-fold increase in LD50 (113.4mg/kg) over Taxol® and PTX-HSA alongside the absence of local venous irritation. Studies herein suggest the therapeutic and clinical applicability of PTX-PEG-HSA for tumor specific therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.