Abstract

In this study, the effect of alumina nanowire on the physical and biological properties of polyhydroxybutyrate-keratin (PHB-K) electrospun scaffold was investigated. First, PHB-K/alumina nanowire nanocomposite scaffolds were made with an optimal concentration of 3 wt% alumina nanowire by using the electrospinning method. The samples were examined in terms of morphology, porosity, tensile strength, contact angle, biodegradability, bioactivity, cell viability, ALP activity, mineralization ability, and gene expression. The nanocomposite scaffold provided a porosity of >80 % and a tensile strength of about 6.72 MPa, which were noticeable for an electrospun scaffold. AFM images showed an increase in surface roughness with the presence of alumina nanowires. This led to an improvement in the degradation rate and bioactivity of PHB-K/alumina nanowire scaffolds. The viability of mesenchymal cells, alkaline phosphatase secretion, and mineralization significantly increased with the presence of alumina nanowire compared to PHB and PHB-K scaffolds. In addition, the expression level of collagen I, osteocalcin, and RUNX2 genes in nanocomposite scaffolds increased significantly compared to other groups. In general, this nanocomposite scaffold could be a novel and interesting construct for osteogenic induction in bone tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.