Abstract

In the 1920s, the availability of piezoelectric materials and electronic devices made it possible to produce ultrasound (US) in water at high amplitudes, so that it could be detected after propagation through large distances. Laboratory experiments with this new mechanical form of radiation showed that it was capable of producing an astonishing variety of physical, chemical and biologic effects. In this review, the early findings on bioeffects are discussed, especially those from experiments done in the first few decades, as well as the concepts employed in explaining them. Some recent findings are discussed also, noting how the old and the new are related. In the first few decades, bioeffects research was motivated partly by curiosity, and partly by the wish to increase the effectiveness and ensure the safety of therapeutic US. Beginning in the 1970s, the motivation has come also from the need for safety guidelines relevant to diagnostic US. Instrumentation was developed for measuring acoustic pressure in the fields of pulsed and focused US employed, and standards were established for specifying the fields of commercial equipment. Critical levels of US quantities were determined from laboratory experiments, together with biophysical analysis, for bioeffects produced by thermal and nonthermal mechanisms. These are the basis for safety advice and guidelines recommended or being considered by national, international, professional and governmental organizations. (E-mail: wnyborg@zoo.uvm.edu)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call