Abstract

During the past several decades, butyltin compounds (BTs), one of the representative groups of organotin compounds (OTs), have been widely used as an antifouling agent in paints for boats, ships, and aquaculture nets (Fent 1996, Champ and Seligman 1996), thus these compounds have been found in a variety of marine organisms, often at concentrations exceeding acute or chronic toxicity levels (Bryan and Gibbs 1991; Alzieu 1996). The hazardous effects of antifouling paints containing BTs in marine ecosystem have become a significant environmental issue all over the world (Champ and Wade 1996; Bosselmann 1996). To prevent the destruction of marine ecosystems, BT application to small boats and fish farming equipment has been banned or regulated in developed countries since the late 1980s (Champ and Wade 1996; Bosselmann 1996). Nevertheless, significant accumulation of BTs has been noted at various trophic levels in the marine food chain including plankton, algae, crustaceans, fishes and cetaceans, indicating that BTs impact continues to be felt in marine ecosystems. Tri-organotins, tributyltin (TBT) are reported to be the most toxic compounds, and at nanogram-per-liter levels, TBT has adverse effects on many aquatic organisms, for example, producing retardation of regenerative growth, delayed molting, reduction in burrowing activity and deformities in limbs in the fiddler crab (Weis and Perlmutter 1987; Weis et al. 1987; Weis and Kim 1988), impairment of egg

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call