Abstract

This study aimed at the assessment of the I, Se, S citrate effect on the organism of broiler chickens. Feeding of chickens of all groups was carried out by using standard balanced feeds – starter, grower, and finish with the use of group feeders placed at the appropriate height from the floor depending on the poultry height. For the chickens of experimental groups, I, Se, S citrate was added to drinking water daily during the 48th day. To the drinking water of chickens of experimental groups different amounts of the citrate solution were added I (200 mg/L), Se (50 mg/L), S (300 mg/L), prepared by the nanotechnology method. Chickens of the II group received the lowest dose of I, Se, S at the rate of 5 μg I/L, 1.25 μg Se/L, 7.5 μg S/L of drinking water, and for poultry of other experimental groups, it was increased by 2 (III), 4 (IV), 6 (V) and 8 (VI) times compared to II group. Coccidiostat "Kokcisan 12%" (KRKA, Slovenia) was added to the starter and grower feed at the stages of its manufacture in quantities of 0.5 kg/t of feed. Coccidiostat was not added to the final feed. During the 48-day technological period, the clinical condition of the poultry was monitored daily by forage and motor activity, safety, and every 7 days – for growth intensity with the individual determination of body weight on a laboratory scale. The investigation of the blood was carried out from the 35th or 48th day during the growing, period and also investigation of the internal organs – liver, heart, spleen, stomach, thymus, and bursa of Fabricius. The increase of cholesterol, triacylglycerols, and albumin in the blood of II, III, and VI chicken groups was established on the 35th day of the experiment, and the reduction of creatinine in III and VI groups. By that time, the effect of highest dose of I, Se, S caused a decrease in the T3 concentration in the blood of chickens in the VI group compared to the I and II groups. In particular, in the blood of chickens of IV, V and VI groups compared to the I, II, III group under these conditions there was a significant increase in the content of urea, Ca, P, cholesterol, as well as albumin – only in IV group on the 48th day. Triacylglycerols’ content increased in the blood serum of chickens in III and IV groups compared to the II and V groups, but in V group – decreased compared to the III, IV groups. The increase in liver, thymus, and heart mass in the II and V chicken groups was noticed and their decrease in the VI group was revealed compared with the control group. Reliable lower coefficients of the body mass of chickens of III and VI groups may indicate a less notable stimulating biological effect of I, Se, S citrate in these doses on liver development than on the whole organism. The addition of I, Se, S citrate to broiler chickens during the period of growing revealed the difference in their biological action in the presence and absence of the Kokcisan 12% in a mixed fodder. A more notable stimulating effect of low dose of I, Se, S citrate on the growth and development on the chickens' organism was established during the withdrawal of coccidiostatics from their diet. The effect may be due to its inhibitory influence on the biological activity of these elements in the first 35 days of growing. In the final period of chicken growing and withdrawal of ionophore Kokcisan from the diet more noticeable changes were revealed in the studied parameters.

Highlights

  • An important problem at present for medicine is the lack of intake of I (Milanesi & Brent, 2017; Malavolta & Mocchegiani, 2018; Sarcar et al, 2018) and Se (Schomburg & Köhrle, 2008; Duntas, 2010; Malavolta & Mocchegiani, 2018) in humans

  • There is typically a reliable decrease in the content of creatinine in the blood of chickens of groups it was increased in 2 (III) (P < 0.05; P < 0.01) and VI (P < 0.001) groups compared to the I, II, IV, V groups in this period with pronounced to lower urea levels in III, and VI groups compared to the I, II, IV, V groups

  • In the blood of chickens of IV, V and VI groups compared to the I, II, III groups under these conditions the content of urea, Ca, P, cholesterol significantly increased, as well as albumin – only in IV group

Read more

Summary

Introduction

An important problem at present for medicine is the lack of intake of I (Milanesi & Brent, 2017; Malavolta & Mocchegiani, 2018; Sarcar et al, 2018) and Se (Schomburg & Köhrle, 2008; Duntas, 2010; Malavolta & Mocchegiani, 2018) in humans. Optimisation of population iodine intake is an important component of preventive health care to reduce the prevalence of thyroid disorders. Severe iodine deficiency causes goitre and hypothyroidism because, despite an increase in thyroid activity to maximise iodine uptake and recycling in this setting, iodine concentrations are still too low to enable production of thyroid hormone. In mild-to-moderate iodine deficiency, increased thyroid activity can compensate for low iodine intake and maintain euthyroidism in most individuals, but at a price: chronic thyroid stimulation results in an increase in the prevalence of toxic nodular goitre and hyperthyroidism in populations (Zimmermann & Boelaert, 2015; Aakre et al, 2020). Adequate iodine status is an important factor in preventing thyroid disorders and maintaining proper mental and physical health

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call