Abstract
Dissimilatory arsenate-respiring prokaryotes (DARPs) are considered to be the major drive of the reductive mobilization of arsenic from solid phases. However, it is not fully understood how phosphate, a structural analog of arsenate, affects the DARPs-mediated arsenic mobilization. This work aimed to address this issue. As-contaminated soils were collected from a Shimen Realgar Mine-affected area. We identified a unique diversity of DARPs from the soils, which possess high As(V)-respiring activities using one of multiple small organic acids as the electron donor. After elimination of the desorption effect of phosphate on the As mobilization, the supplement of additional 10 mM phosphate to the active slurries markedly increased the microbial community-mediated reductive mobilization of arsenic as revealed by microcosm tests; this observation was associated to the fact that phosphate significantly increased the As(V)-respiratory reductase (Arr) gene abundances in the slurries. To confirm this finding, we further obtained a new DARP strain, Priestia sp. F01, from the samples. We found that after elimination of the chemical effect of phosphate, the supplement of 10 mM phosphate to the active slurries resulted in an 82.2% increase of the released As(III) in the solutions, which could be contributed to that excessive phosphate greatly increased the Arr gene abundance, and enhanced the transcriptional level of arrA gene and the bacterial As(V)-respiring activity of F01 cells. Considering that phosphate commonly coexists with As in the environment, and is a frequently-used fertilizer, these findings are helpful for deeply understanding why As concentrations in contaminated groundwater are dynamically fluctuated, and also provided new knowledge on the interactions between the biogeochemical processes of P and As.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.