Abstract

Development of functional coatings for artificial bone implants that strengthen the osseointegration and accelerate bone healing processes is urgently needed in the biomedical field. In this study we present biological effect of novel composite coatings with different concentration of silica nanoparticles within crystalline hydroxyapatite matrix (HAp-SiO2) synthesized on titanium under hydrothermal conditions. Samples were analyzed for their elemental composition, structure, bioactivity and in vitro cytotoxicity. The results indicate the formation and homogeneous distribution of silica nanoparticles on the surface of hexagonal hydroxyapatite (HAp) crystals. The coatings show improved bioactivity in comparison with pure HAp after 4 days of immersion in simulated body fluid (SBF). The responses of human osteoblast-like cells (MG-63) cultured onto the synthesized materials provide evidence that HAp-SiO2 composites exhibit good biocompatibility. We propose that this is because HAp-SiO2 composites favor biomineralization process with cell proliferation remaining unaffected, regardless of the amount of silica. Furthermore, SEM and fluorescence measurements demonstrate that HAp-SiO2 had positive effect on cell morphology, favoring cell adhesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.