Abstract

Rao’s quadratic entropy (QE) is a diversity index that includes the abundances of categories (e.g. alleles, species) and distances between them. Here we show that, once the distances between categories are fixed, QE can be maximized with a reduced number of categories and by several different distributions of relative abundances of the categories. It is shown that Rao’s coefficient of distance (DISC), based on QE, can equal zero between two maximizing distributions, even if they have no categories in common. The consequences of these findings on the relevance of QE for understanding biological diversity are evaluated in three case studies. The behaviour of QE at its maximum is shown to be strongly dependent on the distance metric. We emphasize that the study of the maximization of a diversity index can bring clarity to what exactly is measured and enhance our understanding of biological diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.