Abstract

In the present work, a strain of the basidiomycete fungus Trametes polyzona was used to decolorize the Amaranth dye. The decolorization was carried out in an Airlift reactor with three flow regimes: 1, 2, and 3 vvm. The results showed that the decolorization was a function of the flow regime. The decolorization times for the regimes of 1, 2, and 3 vvm were 30, 25, and 19 days, respectively. The COD (Chemical Oxygen Demand) decreased from 1600 to 72 mg COD/L. The enzymatic activity kinetics of laccase (Lcc), lignin peroxidase (LiP), and manganese peroxidase (MnP) were determined. In all the treatments, the enzyme LiP was expressed during the first 6 days, at which point 80% decolorization was observed, whereas Lcc and MnP enzymes were produced from day 6 until the end of the decolorization process. The effluent generated showed no inhibitory effects on the growth of the algae Nannochloropsis salina. T. polyzona showed great versatility in the decolorization of synthetic effluents containing the Amaranth dye, and the fungus was able to use this dye as its only carbon source starting at the beginning of the process. LiP was the enzyme that contributed the most to the decolorization process, and on average, 95% decreases in color and the COD were observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.