Abstract

BackgroundMethane is the primary component of natural gas and biogas. The huge abundance of methane makes it a promising alternative carbon source for industrial biotechnology. Herein, we report diamine compound, putrescine, production from methane by an industrially promising methanotroph Methylomicrobium alcaliphilum 20Z.ResultsWe conducted adaptive evolution to improve putrescine tolerance of M. alcaliphilum 20Z because putrescine highly inhibits the cell growth. The evolved strain 20ZE was able to grow in the presence of 400 mM of putrescine dihydrochloride. The expression of linear pathway ornithine decarboxylase genes from Escherichia coli and Methylosinus trichosporium OB3b allowed the engineered strain to produce putrescine. A higher putrescine titer of 12.44 mg/L was obtained in the strain 20ZE-pACO with ornithine decarboxylase from M. trichosporium OB3b. For elimination of the putrescine utilization pathway, spermidine synthase (MEALZ_3408) was knocked out, resulting in no spermidine formation in the strain 20ZES1-pACO with a putrescine titer of 18.43 mg/L. Next, a genome-scale metabolic model was applied to identify gene knockout strategies. Acetate kinase (MEALZ_2853) and subsequently lactate dehydrogenase (MEALZ_0534) were selected as knockout targets, and the deletion of these genes resulted in an improvement of the putrescine titer to 26.69 mg/L. Furthermore, the putrescine titer was improved to 39.04 mg/L by overexpression of key genes in the ornithine biosynthesis pathway under control of the pTac promoter. Finally, suitable nitrogen sources for growth of M. alcaliphilum 20Z and putrescine production were optimized with the supplement of 2 mM ammonium chloride to nitrate mineral salt medium, and this led to the production of 98.08 mg/L putrescine, almost eightfold higher than that from the initial strain. Transcriptome analysis of the engineered strains showed upregulation of most genes involved in methane assimilation, citric acid cycle, and ammonia assimilation in ammonia nitrate mineral salt medium, compared to nitrate mineral salt medium.ConclusionsThe engineered M. alcaliphilum 20ZE4-pACO strain was able to produce putrescine up to 98.08 mg/L, almost eightfold higher than the initial strain. This study represents the bioconversion of methane to putrescine—a high value-added diamine compound.

Highlights

  • IntroductionThe huge abundance of methane makes it a promising alternative carbon source for industrial biotechnology

  • Methane is the primary component of natural gas and biogas

  • We concluded that low putrescine tolerance could be a main barrier for metabolic engineering of M. alcaliphilum 20Z for putrescine production

Read more

Summary

Introduction

The huge abundance of methane makes it a promising alternative carbon source for industrial biotechnology. We report diamine compound, putrescine, production from methane by an industrially promising methanotroph Methylomicrobium alcaliphilum 20Z. Putrescine (1,4-diaminobutane) is a four-carbon diamine found in a wide range of organisms because it is necessary for cell growth and proliferation [1]. Putrescine is a chemical platform monomer used for the synthesis of high-performance bioplastic nylon-4,6 that combines the benefits of a high melting point and excellent chemical resistance [2]. There is a high demand for putrescine (about 10,000 tons per year in Europe), and this demand is predicted to increase [3]; putrescine production has received significant attention. The development of a biotechnological process for the production of putrescine has become attractive

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call