Abstract

Chemical insecticides often are not efficient in reducing Alphitobius diaperinus populations in poultry farms and have induced insect resistance. Entomopathogenic nematodes (EPNs) appear as an alternative to pest biocontrol agents; however, their efficiency on rice hull litter is still unknown. The aim of this study was to evaluate the potential of Steinernema rarum (CUL isolate), Heterorhabditis bacteriophora (SMC isolate) and their symbiotic bacteria as biocontrol agents of A. diaperinus larvae and adults in rice hull litter. Mortality of insect adults and fifth- and seventh-instar larvae was determined in Petri dishes containing filter paper or rice hull. The effect of Xenorhabdus szentirmaii and Photorhabdus luminescens on L7 and adults in rice hull substrate was also evaluated. Moreover, the effectiveness of the EPNs was assessed in bags in an environment simulating the prevailing conditions in a broiler chicken farm. Under laboratory conditions, insect mortality was significantly affected by EPN species, substrate, insect stage and time after application. Mortality of L5 and L7 caused by EPNs in rice hulls reached a peak of 64 and 57.3 %, respectively, whereas symbiotic bacteria applied on rice hull showed low mortality rate at both insect stages. In the simulated poultry farm conditions, S. rarum and H. bacteriophora caused up to 40.8 and 50.4 % mortality of A. diaperinus larvae, respectively, but with adult mortality being low for both species. We conclude that infective juveniles from S. rarum CUL and H. bacteriophora SMC isolates can be used as biological control agents of A. diaperinus larvae in chicken litter containing rice hulls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.