Abstract

Aspergillus flavus is the main producer of aflatoxin B1, one of the most toxic contaminants of food and feed. With global warming, climate conditions have become favourable for aflatoxin contamination of agricultural products in several European countries, including Serbia. The infection of maize with A. flavus, and aflatoxin synthesis can be controlled and reduced by application of a biocontrol product based on non-toxigenic strains of A. flavus. Biological control relies on competition between atoxigenic and toxigenic strains. This is the most commonly used biological control mechanism of aflatoxin contamination in maize in countries where aflatoxins pose a significant threat. Mytoolbox Af01, a native atoxigenic A. flavus strain, was obtained from maize grown in Serbia and used to produce a biocontrol product that was applied in irrigated and non-irrigated Serbian fields during 2016 and 2017. The application of this biocontrol product reduced aflatoxin levels in maize kernels (51–83%). The biocontrol treatment had a highly significant effect of reducing total aflatoxin contamination by 73%. This study showed that aflatoxin contamination control in Serbian maize can be achieved through biological control methods using atoxigenic A. flavus strains.

Highlights

  • Aflatoxins are the most common contaminants of important agricultural commodities including maize, cottonseed, peanuts, and pistachio nuts

  • One isolate (Mytoolbox Af01) was chosen for biocontrol agent preparation because the two detected atoxigenic strains originated from a narrow geographical region and were genetically identical

  • The amplification products of the first two multiplex reactions are shown on the gel images, aligned to a schematic diagram of chromosome 3 containing the aflatoxin biosynthesis gene cluster

Read more

Summary

Introduction

Aflatoxins are the most common contaminants of important agricultural commodities including maize, cottonseed, peanuts, and pistachio nuts. Aspergillus flavus and related species produce aflatoxins, which are secondary metabolites that can adversely affect human health and food security in warm agricultural areas [1,2]. Aflatoxin B1 (AFB1), which is classified as a Group 1a carcinogen by the International. Agency for Research on Cancer [5], is the most common and toxic of the four major aflatoxins B1, B2, G1, and G2. Aflatoxin concentration in food and feed is strictly regulated by international organisations due to the significant impacts on human health [6]. Products contaminated by aflatoxins have limited value and access to markets, resulting in significant economic losses [3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.