Abstract

BackgroundBiomarkers of biological aging – DNA methylation age (DNAm age) and leukocyte telomere length (LTL)– correlate strongly with chronological age across the life course. It is, however, unclear how these measures of cellular wear and tear are associated with muscle strength and functional capacity, which are known to decline with older age and are associated with mortality. We investigated if DNAm age and LTL were associated with body composition and physical functioning by examining 48 monozygotic twin sisters.MethodsWhite blood cell DNAm age (predicted years) was calculated from Illumina 450 k BeadChip methylation data using an online calculator. DNAm age acceleration was defined from the residuals derived from a linear regression model of DNAm age on chronological age. LTL was measured by qPCR. Total body percentage of fat and lean mass were estimated using bioimpedance. Physical functioning was measured by grip strength, knee extension strength and by 10 m maximal walking speed test.ResultsIn all participants, DNAm age (58.4 ± 6.6) was lower than chronological age (61.3 ± 5.9 years). Pairwise correlations of monozygotic co-twins were high for DNAm age (0.88, 95% CI 0.79, 0.97), age acceleration (0.68, 95% CI 0.30, 0.85) and LTL (0.77, 95% CI 0.60, 0.94). Increased age acceleration i.e. faster epigenetic aging compared to chronological age was associated with lower grip strength (β = − 5.3 SE 1.9 p = 0.011), but not with other measures of physical functioning or body composition. LTL was not associated with body composition or physical functioning.ConclusionsTo conclude, accelerated DNAm age is associated with lower grip strength, a biomarker known to be associated with physiological aging, and which predicts decline in physical functioning and mortality. Further studies may clarify whether epigenetic aging explains the decline in muscle strength with aging or whether DNAm age just illustrates the progress of aging.

Highlights

  • Biomarkers of biological aging – DNA methylation age (DNAm age) and leukocyte telomere length (LTL)– correlate strongly with chronological age across the life course

  • Within-pair analysis showed that the twin sisters were highly similar for their DNAm age, age acceleration, and LTL (r = 0.88, 95% CI 0.79–0.97; r = 0.68, 0.39–0.85; r = 0.77, 0.60–0.94, respectively)

  • DNAm age acceleration was not associated with LTL, when LTL was adjusted for age (r = − 0.29, p = 0.059)

Read more

Summary

Introduction

Biomarkers of biological aging – DNA methylation age (DNAm age) and leukocyte telomere length (LTL)– correlate strongly with chronological age across the life course. It is, unclear how these measures of cellular wear and tear are associated with muscle strength and functional capacity, which are known to decline with older age and are associated with mortality. Only a small fraction of individual variation to life expectancy can be accounted for using known and Epigenetic changes affect the function of DNA without altering the genetic code itself. The purpose of the present study was to investigate if novel biological clocks (DNAm age and LTL) can explain interindividual variation in body composition and physical functioning in 54 to 72 year-old women

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call