Abstract

BackgroundThe outbreak of coronavirus disease 2019 (COVID-19) has caused a public catastrophe and global concern. The main symptoms of COVID-19 are fever, cough, myalgia, fatigue and lower respiratory tract infection signs. Almost all populations are susceptible to the virus, and the basic reproduction number (R0) is 2.8–3.9. The fight against COVID-19 should have two aspects: one is the treatment of infected patients, and the other is the mobilization of the society to avoid the spread of the virus. The treatment of patients includes supportive treatment, antiviral treatment, and oxygen therapy. For patients with severe acute respiratory distress syndrome (ARDS), extracorporeal membrane oxygenation (ECMO) and circulatory support are recommended. Plasma therapy and traditional Chinese medicine have also achieved good outcomes. This review is intended to summarize the research on this new coronavirus, to analyze the similarities and differences between COVID-19 and previous outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) and to provide guidance regarding new methods of prevention, diagnosis and clinical treatment based on autodock simulations.MethodsThis review compares the multifaceted characteristics of the three coronaviruses including COVID-19, SARS and MERS. Our researchers take the COVID-19, SARS, and MERS as key words and search literatures in the Pubmed database. We compare them horizontally and vertically which respectively means concluding the individual characteristics of each coronavirus and comparing the similarities and differences between the three coronaviruses.ResultsWe searched for studies on each outbreak and their solutions and found that the main biological differences among SARS-CoV-2, SARS-CoV and MERS-CoV are in ORF1a and the sequence of gene spike coding protein-S. We also found that the types and severity of clinical symptoms vary, which means that the diagnosis and nursing measures also require differentiation. In addition to the common route of transmission including airborne transmission, these three viruses have their own unique routes of transmission such as fecal-oral route of transmission COVID-19.ConclusionsIn evolutionary history, these three coronaviruses have some similar biological features as well as some different mutational characteristics. Their receptors and routes of transmission are not all the same, which makes them different in clinical features and treatments. We discovered through the autodock simulations that Met124 plays a key role in the efficiency of drugs targeting ACE2, such as remdesivir, chloroquine, ciclesonide and niclosamide, and may be a potential target in COVID-19.

Highlights

  • We discovered through the autodock simulations that Met124 plays a key role in the efficiency of drugs targeting ACE2, such as remdesivir, chloroquine, ciclesonide and niclosamide, and may be a potential target in COVID-19

  • The main differences among severe acute respiratory syndrome (SARS)-CoV-2, SARS-CoV and Middle East respiratory syndrome (MERS)-CoV are in ORF1a and the sequence of gene spike coding protein-S [5], which was identified as a key protein that interacts with target cells

  • Compared to the previous SARS and MERS outbreaks, we found that COVID-19 has a few similarities with regard to the infection source and clinical symptoms, but it some differences

Read more

Summary

Introduction

The outbreak of coronavirus disease 2019 (COVID-19) has caused a public catastrophe and global concern. This review is intended to summarize the research on this new coronavirus, to analyze the similarities and differences between COVID-19 and previous outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) and to provide guidance regarding new methods of prevention, diagnosis and clinical treatment based on autodock simulations. The outbreak of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus has become a public health emergency of international concern (PHEIC). The virus has been named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on its appearance under electron microscopy [1]. The Chinese Center for Disease Control and Prevention (China CDC) determined that SARS-CoV-2 infection is the cause of the outbreak that started in in Wuhan City (CDC, 2020) [3]. The COVID-19 situation has been suppressed recently in China, we still need to strengthen the prevention and control of the epidemic, improve people’s awareness of protective measures, and minimize the loss caused by the virus to prevent it from becoming a severe global pandemic

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call