Abstract

Introduction: The efficiency of stem cell isolation, culture, and biological characterization techniques for treatment is facing serious challenges. The purpose of this study was to provide a protocol for isolation and culture of three types of mesenchymal stem cells (MSCs) derived from the human placenta, amniotic membrane, and umbilical cord with high efficiency used for cell therapy. Methods: During this experimental laboratory study, 10 complete placenta samples were prepared from cesarean section mothers. The protocol for isolation and culture of mesenchymal cells from the placenta tissue, umbilical cord, and amniotic membrane was enzymatically optimized. The morphological features of mesenchymal cells were investigated using an inverted microscope and their biological features were measured using flow cytometry. The differentiation potential of the cells was evaluated by measuring their differentiation capacity into osteocytes and adipocytes. The absorption and reflectance features of the cells were recorded by optical spectroscopy. Finally, the data were statistically analyzed. Results: The expression of CD44, CD73, CD90 and CD29 markers in human placenta tissue-derived cells was significant. CD14, CD34 and CD45 markers were not expressed or were slightly expressed. These cells were highly viable and successfully differentiated into osteocytes and adipocytes. MSCs absorbed more light than visible light by showing light absorption peaks at wavelengths of about 435 and 550 nm. Conclusion: The protocol used in this study for isolation and culture of human placenta tissue-derived MSCs had significant efficiency for the production of MSCs for use in cell therapy and tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.