Abstract

Co-composting efficiently reclaims dredged sediments (S) and green waste (GW), creating stable products for agricultural applications. However, the use of S-GW co-composts can be limited by legislative thresholds, especially for co-composts with a high S percentage. The evaluation of S-GW co-compost stability by biological assessment can allow for a better understanding of S and GW recycling, as well as the S-GW co-compost application. For this purpose, the microbial biomass, composition, respiration, and eco-enzyme stoichiometry (EST) were assessed, coupled with chemical analysis, in the co-composting of S and GW in different ratios. The Photinia x fraseri and Viburnum tinus L. growth was monitored in a plant trial, comparing the studied co-composts with a control substrate. The EST approach was applied as an indicator of the co-composting stability during the process and after the plant cultivation. The chemical and biological parameters confirmed the suitability of co-composting in the GW and S recovery and the EST approach highlighted a better stability for the 3S:1GW co-compost at the end of the process and after plant cultivation. Viburnum tinus showed a similar growth to the control, while Photinia x fraseri resulted in being more sensitive to the co-compost. The biological assessments were good indicators of the S-GW compost stability for their application in crop cultivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call