Abstract

ABSTRACT Synergistic interactions between biological and chemical air pollutants, enhanced by the effect of meteorological factors, may increase the risk of respiratory disease. Therefore, to accurately evaluate the impact of air pollution on human health, the concomitant behaviors of various air pollutants should be investigated. In this study, the peculiarities of the temporal co-existence of allergenic pollen (alder, birch, grass, and mugwort), fungal spores (Alternaria and Cladosporium), and hazardous air pollutants (ground-level ozone and particulate matter, PM10) collected in Poznan (western Poland) from 2005 to 2016 were analyzed with particular attention to their relation with air temperature. The results of the statistical analysis showed that the daily concentrations of certain airborne particles (pollen, fungal spores, and ozone) significantly increased on days with high mean temperatures. However, high temperatures occurring during earlier stages of development for grass and mugwort, prior to pollen release, decreased the overall quantity of pollen produced and released during the season. Furthermore, the daily concentration of PM10 decreased with increasing temperature. As a result, the co-exposure of alder pollen and PM10 was limited to a narrow temperature range (4–10°C) and mainly recorded during February and March. In most cases, a characteristic pattern was observed: The co-occurrence of air pollutants increased with the temperature. When birch and grass pollen co-occurred with other air pollutants, the temperature was significantly higher (by 2.0 to 8.0°C) than when only pollen grains were observed. In general, high temperatures favored the simultaneous occurrence of pollen grains, fungal spores, and ozone, which was most pronounced during hot days in June and August. Such conditions should therefore be considered the most hazardous for people suffering from allergic airway diseases.

Highlights

  • Air pollution is considered a prominent factor responsible for an increase in exacerbation and prevalence of allergic airway diseases (Saxon and Diaz-Sanchez, 2005; Bartra et al, 2007)

  • High temperatures favored the simultaneous occurrence of pollen grains, fungal spores, and ozone, which was most pronounced during hot days in June and August

  • Alder pollen may act as a primer and make allergic people more sensitive to birch pollen—it may evoke stronger reactions during the birch pollen season, and allergic reactions may occur at lower thresholds of birch pollen concentrations (Emberlin et al, 1997)

Read more

Summary

Introduction

Air pollution is considered a prominent factor responsible for an increase in exacerbation and prevalence of allergic airway diseases (Saxon and Diaz-Sanchez, 2005; Bartra et al, 2007). Important components of these mixtures include anthropogenic (chemical) airborne particles, e.g., particulate matter (PM), ozone and carbon monoxide concentrations, and natural (biological) particles, such as pollen and fungal spores. The combined exposure to chemical and biological air pollutants may strengthen (both synergistically and additively) allergic reactions (Baldacci et al, 2015). The need to consider both pollen and pollutant contents for epidemiologic evaluation of environmental determinants in respiratory allergies has been recently announced (Schiavoni et al, 2017)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call