Abstract
There are studies which indicate that some sulfonamide derivatives can produce changes in the cardiovascular system; however, their biological activity on perfusion presure and coronary resistance is not clear. The aim of this research was to evaluate the effect exerted by benzenesulfonamide, and their derivatives (2,5-dichloro- N-(4-nitro-phenyl)-benzene-sulfonamide, 2-hydrazino-carbonyl-benzenesulfonamide, 4-(2-amino-ethyl)-benze- ne-sulfonamide, and 4-[3-(4-nitro-phenyl)-ureido]-benzene- sulfonamide) on perfusion pressure and coronary reistance. To evaluate the biological activity of benzenesulfonamide and their derivatives on perfusion pressure and coronary reistance an isolated rat heart model was used. Furthermore, theoretical interaction of 4-(2-amino-ethyl)-benzenesul- fonamide with Calcium channel surface was determined using 6jp5 protein, nifedipine, amlodipine, verapamil and BayK 8644 as theoretical tools in a DockingServer program. The Results showed that 4-(2-amino-ethyl)-ben- zenesulfonamide decreased perfusion pressure and coronary resistance compared to benzenesulfonamide, 2,5-dichloro- N-(4-nitro-phenyl)-benzene-sulfonamide, 2-hydrazinocar- bonyl-benze-nesulfonamide, 4-[3-(4-nitro-phenyl)-ureido]- benenesulfonamide and the control conditions. Besides, theoretical data suggest that 4-(2-aminoethyl)benzenesulfo- namide could interact with aminoacid residues such as Glu614 and Ala320 involved in 6jp5 protein surface. This phenomenon could result in an ligand-Calcium channel complex formation to produce a decrease in perfusion pressure and vascular resistance. It is noteworthy that biological and experimental models used in this study is an invaluable research tool for investigating questions across the spectrum of physiologic functions of cardiovascular system such as perfusion pressure and coronary resistance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.