Abstract

Each laminin α chain (α1-α5 chains) has chain-specific diverse biological functions. The C-terminal globular domain of the α chain consists of five laminin-like globular (LG1-5) modules and plays a critical role in biological activities. The LG modules consist of a 14-stranded β-sheet (A-N) sandwich structure. Previously, we described the chain-specific biological activities of the loop regions between the E and F strands in the LG4 modules using five homologous peptides (G4EF1-G4EF5). Here, we further analyze the biological activities of the E-F strands loop regions in the rest of LG modules. We designed 20 homologous peptides (approximately 20 amino acid length), and 17 soluble peptides were used for the cell attachment assay. Thirteen peptides promoted cell attachment activity with different cell morphologies. Cell attachment to peptides G1EF1, G1EF2, G2EF1, G3EF4, and G5EF4 was inhibited by heparin, and peptides G1EF1, G1EF2, and G2EF1 specifically bound to syndecan-overexpressing cells. Cell attachment to peptides G2EF3, G3EF1, G3EF3, G5EF1, G5EF3, and G5EF5 was inhibited EDTA. Further, cell attachment to peptides G3EF3, G5EF1, and G5EF5 was inhibited by both anti-integrin α2 and β1 antibodies, whereas cell attachment to peptide G5EF3 was inhibited by only anti-integrin β1 antibody. Cell attachment to peptides G1EF4, G3EF4, and G5EF4 was inhibited by both heparin and EDTA and was not inhibited by anti-integrin antibodies. The active peptide sequence alignments suggest that the syndecan-binding peptides contain a "basic amino acid (BAA)-Gly-BAA" motif in the middle of the molecule and that the integrin-binding peptides contain an "acidic amino acid (AAA)"-Gly-BAA motif. Core-switched peptide analyses suggested that the "BAA-Gly-BAA" motif is critical for binding to syndecans and that the "AAA-Gly-BAA" motif has potential to recognize integrins. These findings are useful for understanding chain-specific biological activities of laminins and to evaluate receptor-specific binding mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call