Abstract
Objective: The main objectives of this study was to analyze the phytochemicals, determine the total flavonoid content, brine shrimp toxicity, antibacterial activity, evaluate the antioxidant, antimicrobial, anti-diabetic activities of nine medicinal plants Callicarpamacrophylla, Bauhinia purpurea, Plumeriarubra, Girardiniadiversifolia, Acacia nilotica, Woodfordiafruticosa (Bark) Woodfordiafruticosa (flower), Terminaliaalata, and Premnabarbata. 
 Methods: The cold percolation method was adopted for the extraction of secondary metabolites in methanol. The preliminary phytochemical analysis was performed by colour differentiation methods. The radical scavenging activity was evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) method. The antidiabetic activity was performed by α-amylase enzyme inhibition activity. The chemical constituent was isolated by column chromatography from the biologically active plant fraction.
 Results: The phytochemical investigation has shown plants are the rich source of secondary metabolites as quinones, saponins, terpenoids and glycosides. Among the nine tested plants, Terminaliaatalia showed the highest radical scavenging activity 96.41±0.47 with IC50 value 6.353 µg/ml, followed by Girardiniadiversifolia 97.26±0.67 with IC50 value 11.52 µg/ml whereas ascorbic acid has 39.85 µg/ml as standard. Bauhinia purpurea showed significant inhibition to the α-amylase enzyme having inhibitory concentration IC50 17.05±13.00 SD in a dose-dependent manner. Woodfordiafruticosa demonstrated significant toxicity to A. salina with LC50 value of 457.08 µg/ml. Callicarpamacrophylla bark showed a potential inhibitory activity against the growth of Straphylococcusaureus as compared to standard chloramphenicol. Active plant extract of Callicarpamacrophylla was subjected for column chromatography. Conclusion: Out of nine plant samples Terminaliaatalia showed the highest radical scavenging activity. The plant extract of Bauhinia purpurea showed significant inhibition to the α-amylase enzyme inhibition. Woodfordiafruticosa demonstrated significant toxicity to A. salina, whereas Callicarpamacrophylla showed the potent antibacterial activity. The active plant extract was subjected for column chromatography and different fractions were collected in solvent polarity basis.
 Conclusion: The phytochemical investigations showed that plant extracts are the rich sources of secondary metabolites such as alkaloids, flavonoids, saponins, glycosides, polyphenols, coumarins and reducing sugars which showed they are supposed to be responsible for different biological activities. IC50 values showed the varied degree of antioxidant property of which Plumeriarubra and Acacia nilotica exhibit good antioxidant property with IC50 value close to the standard ascorbic acid.
Highlights
Nepal is rich in all three levels of biodiversity, namely species diversity, genetic diversity and habitat diversity
The plant sample Callicarpamacrophylla showed the highest yield percentage (10.37%), indicating the plant extract is the rich source of secondary metabolites
The phytochemical investigations showed that plant extracts are the rich sources of secondary metabolites such as alkaloids, flavonoids, saponins, glycosides, polyphenols, coumarins and reducing sugars which showed they are supposed to be responsible for different biological activities
Summary
Nepal is rich in all three levels of biodiversity, namely species diversity, genetic diversity and habitat diversity. Nepal has been regarded as the natural showroom of biodiversity because of its geotopography which is reflected in its dramatic contrast of climatic condition, which in turn is reflected in floral and faunal variations. Such biodiversity has supported the live hood of people who live in remote areas of Nepal. These local people of a different ethnic group traditionally acquired a diversity of knowledge regarding the utilization of plant and animal resources for various purposes like food, medicine, clothing construction, dyes, ritual performances, energy, etc. Free radicals have been blamed, at least partially, for the development of several chronic ailments, for example, Alzheimer’s disease, atherosclerosis, cancers and many others [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Current Pharmaceutical Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.