Abstract

The biological activity of three monoclonal antibodies (mAbs) against the rabbit mammary prolactin (PRL) receptor (M110, A82, and A917) were investigated using explants of rabbit mammary gland. The three mAbs which were all able to inhibit the binding of 125I-ovine prolactin to its receptor had different biological activities. Two mAbs (M110 and A82) were able to prevent the stimulating effect of PRL on casein synthesis when the molar ratio between the mAb and PRL was 100. At a lower concentration, M110 moved the PRL dose-response curve to the right by a factor of 2.4. This mAb was also effective in vivo, reducing milk production in a lactating rabbit, in a similar fashion to the prolactin lowering drug, CB-154. One mAb (A917) was able to mimic the action of PRL on both casein and DNA ([3H]thymidine incorporation) synthesis, whereas the other two mAbs were without any stimulatory effect. For this stimulatory effect to be observed, bivalency of the antibody was essential, since monovalent fragments, which were able to inhibit PRL binding, had no agonistic activity. The ability of the mAbs to induce a down-regulation of receptors was also studied. M110, which was equipotent to PRL in occupation of receptors, induced no down-regulation, while A917, which had full biological activity, induced only a small degree of down-regulation. These studies suggest that the binding domain of the receptor might be relatively complex, since only a part of this domain recognized by the antibody with PRL-like activity was able to induce hormonal action. Alternatively, only those antibodies able to microaggregate the receptors may possess PRL-like activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.