Abstract

Traditional disposal of agricultural bio-waste such as pig manure and banana peel waste poses an environmental nuisance. The uncontrolled disintegration of these waste materials decomposes to toxic effluent and methane a greenhouse gas twenty-one times more potent than carbon dioxide at trapping heat in the atmosphere, which is detrimental to the climate by elevating temperatures. Agricultural bio-waste is rich in nutrients that include nitrogen and phosphorus. Selectively separating these nutrients from the solid phase to produce high value products has been envisaged as an effective method of waste valorisation. This study aims to investigate the solubilisation of phosphorus (P) during anaerobic digestion (AD) of pig manure with banana peel waste as the co-substrate. The objective was to enhance the biological dissolution of the phosphorus from solid pig manure to the aqueous phase as this is envisaged to subsequently ease the recovery of P as a concentrated product via crystallization. Thereafter, phosphorus is used as a slow-release mineral fertilizer. Biological acidification was effective in reducing the pH to less than 6.50 from an initial pH of 7.28 at higher doses of BPW >100 g/L. Maximum dissolution of total phosphorus of 75% was observed at a pH of 5.40. Multiple regression analysis was used to correlate pH, banana peel waste concentration, and the anaerobic digestion time (ADT) to optimize the dissolution of P as this was deduced to be occurring at a low pH. A 2nd order polynomial was deduced to best fit the data with an R2 value of 0.90. The p values for the HRT and banana peel waste concentration were both <0.05 showing that both variables had a strong influence on the pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.