Abstract

The spent light emitting diode (LED) monitors are one of the fastest-growing waste streams that could provide indium, an essential element for the industry. This study presents a comprehensive strategy for indium extraction from spent LED monitors, including bioleaching followed by solvent extraction, stripping, and precipitation. Effects of A. thiooxidans and A. ferrooxidans inoculum percentage in mixed culture, pulp density, and time on indium, aluminum, and strontium bioleaching were investigated. In this regard, at optimized inoculum percentages (1.5 and 0.5% (v/v) of A. ferrooxidans and A. thiooxidans, respectively) and pulp density (60 g/L) at initial pH of 2, approximately 100% indium recovery was obtained in 18 days. The solubilized indium in the bioleaching solution has been extracted by the organic solvent of 20% (v/v) D2EHPA in kerosene. Following extraction, the stripping step was carried out to recover indium rather than iron selectively. The effect of two-phase contact time and aqueous to organic phase volume ratio in the extraction step and the acid type and concentration in the stripping step on indium and iron recovery percentages have been evaluated. For indium extraction, the optimum ratio of aqueous to organic phase volume and time were determined as 1 and 30 min, respectively, recovering 91.5% of indium. Using 5 M sulfuric acid has also resulted in an efficient stripping process. Finally, sodium hydroxide performed indium precipitation and a final precipitate of 94% (w/w) indium was obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call