Abstract

Previous studies have shown that Sophorae Tonkinensis radix et rhizome (ST) can be used to treat some lung diseases. However, the therapeutic potentials, therapeutic advantages, mechanism of action, and material basis of ST treatment of lung diseases remain unclear. Thus, the aim of this study was to carry out an integrated analysis based on the biolabel-led research pattern. Proteomics and metabonomics were applied to explore the biolabels responsible for the effect of ST on lung tissue. Based on the biolabels, a bioinformatics database was used to topologically analyze the therapeutic potentials, therapeutic advantages, mechanism of action, and material basis of ST in treating lung diseases. Four human lung-cancer cell models were used to validate the results of the biolabel analysis. In total, 45 proteins and 3 metabolites were significantly enriched in 13 pathways and were considered as biolabels. Bioinformatics revealed that the therapeutic potentials of ST involved a variety of lung diseases, especially lung neoplasms. Under the mediation of 40 biolabels, 29 compounds may be the material basis of ST in treating lung diseases. In a verification experiment, ST had a significant inhibitory effect on the H226cell line (lung squamous cell carcinoma), which ranks first in morbidity and mortality among lung cancers in China. Additionally, five biolabels (CPS1, CKM, CPT1B, COX5B, and COX4I1) were involved in the anti-lung cancer mechanism of ST and 3 compounds (gallic acid, betulinic acid, and caffeic acid). These findings indicate that the biolabel-led research pattern was helpful in achieving the objectives of this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call