Abstract

Americium-241 whole body and internal biokinetics were experimentally investigated in the euryhaline diamond sturgeon Acipenser gueldenstaedtii during its uptake from water and food, in fresh (FW) and brackish water (BW; 9 psu). Whole-body uptake rates of 241Am from water and subsequent depuration rates were quantified over 14 and 28 days, respectively, and assimilation efficiency (AE) of 241Am from diet (chironomid) was determined over 28 days. FW reduced the biological half-life of 241Am following aqueous uptake by an order of magnitude. In contrast BW greatly reduced 241Am assimilation efficiency (AE) from diet (chironomid) by several orders of magnitude (from an AE of 8.5% (FW) down to 0.003% (BW)). Hence, salinity per se is indicated as a major environmental variable in determining the radiological exposure of A. gueldenstaedtii to 241Am. During aqueous exposure BW appreciably increased 241Am activity concentrations in most body components, but aqueous or dietary exposure pathway at either salinity did not determine marked differences in how 241Am was distributed among six body components. The highly mineralized skin of A. gueldenstaedtii recurred as a major repository of 241Am in all experimental treatments, as high as 50% among body components, due to its internal transfer from diet, surface adsorption and/or active absorption from water. The indicated prominence of the aqueous, compared to the dietary, exposure pathway for 241Am accumulation by A. gueldenstaedtii suggests its radiological exposure would be enhanced by BW as it leads to its greater long-term retention, due to a much longer biological half-life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.