Abstract

In this article, a mechanistic biokinetic model for nitrogen removal in free water surface constructed wetlands treating eutrophic water was developed, including organic matter performance due to its importance in nitrogen removal by denitrification. Ten components and fourteen processes were introduced in order to simulate the forms of nitrogen and organic matter, the mechanisms of autotrophic and heterotrophic microorganisms in both aerobic and anoxic conditions, as well as macrophytes nitrogen uptake and release. Dissolved oxygen was introduced as an input variable with a time step of 0.5days for mimicking eutrophic environments: aerobic conditions were assigned during daylight hours and anoxic conditions during the night. The sensitivity analysis showed that the most influential parameters were those related to the growth of heterotrophic and autotrophic microorganisms. The model was properly calibrated and validated in two full scale systems working in real conditions for treating eutrophic water from Lake L'Albufera (València). In the studied systems, ammonium was mainly removed by the growth of autotrophic microorganisms (nitrification) whereas nitrate was removed by the anoxic growth of heterotrophic microorganisms (denitrification). Macrophyte uptake removed between 9 and 19% of the ammonium entering to the systems, although degradation of dead standing macrophytes returned a significant part to water column.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call