Abstract

Commercial application of lithium-sulfur (Li-S) batteries is hindered by the insulating nature of sulfur and the dissolution of polysulfides. Here, a bioinspired 3D urchin-like N-doped Murray’s carbon nanostructure (N-MCN) with interconnected micro-meso-macroporous structure and a polydopamine protection shell has been designed as an effective sulfur host for high-performance Li-S batteries. The advanced 3D hierarchically porous framework with the characteristics of the generalized Murray’s law largely improves electrolyte diffusion, facilitates electrons/ions transfer and provides strong chemisorption for active species, leading to the synergistic structural and chemical confinement of polysulfides. As a result, the obtained P@S/N-MCN electrode with high areal sulfur loading demonstrates high capacity at high current densities after long cycles. This work reveals that following the generalized Murray’s law is feasible to design high-performance sulfur cathode materials for potentially practical Li-S battery applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call