Abstract

AbstractIn nature, animals or plants often use soft organs to move and hunt. Research works on bioinspired materials and devices have attracted more and more interest as which show the potential for future intelligent robots. As key components of soft robots, biomimetic soft actuators are adapted to greater requirements for convenient, accurate, and programmable controlling robots. Here, a class of materials and processing routes of ultrathin actuators are reported for bioinspired piecewise controllable soft robots, where the actuators associate with thermal‐responsible soft silicone thin film with thickness as thin as 45 µm and electrically driven by well mechanical designed metallic thin film electrodes. Multiple electrodes in the robots in charge of individual segments control allow the soft robots exhibiting similar functionalities of animals or plants (for example, imitating the tongue of a reptile, such as chameleon to hunt moving preys, and mimicking vines to tightly wind around objects). These bionic results in the soft robots demonstrate their advantages in precise and flexible operation, which provides a good reference for the future research of intelligent soft actuators and robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.