Abstract

Rose petal mimetic surfaces with ultrahigh water pinning forces have been fabricated via nanoimprinting process onto three different polymer films. Water pinning forces ranging from 104 to 690 μN are obtained on free-standing polycarbonate films with imprinted nanostructures. Through a systematic variation of the surface structures, this study provides experimental evidence that an ultrahigh water pinning force can be achieved by combining two surface topographical designs: (1) conical- or parabolic-shaped nanoprotrusions and (2) isotropic and continuous nanoprotrusions. These design criteria ensure that a continuous solid-liquid contact line is achieved and provide a rule-of-thumb to engineer surfaces with tunable water pinning forces. The ultrahigh water pinning film is further demonstrated to mitigate the "coffee ring" effect, a phenomenon associated with nonuniform deposition from a drying solute-laden liquid droplet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.