Abstract

Tear resistance is of vital importance in the fabrication and application of synthetic soft materials. However, the paradox of simultaneously improving the tearing energy and elasticity remains a huge challenge for conventional approaches. Here, inspired by the skin, we successfully constructed an extraordinary tear-resistant, superelastic elastomer by the introduction of nanosized polycyclodextrin into the elastomer network to form a slidable interpenetrate double network structure. The tearing energy of the SDEP elastomer is up to 274 KJ/m2, which is comparable to metals and alloys and increased more than 100 times compared with the chemically cross-linked elastomer. The fracture strain exceeded 3300%, which is hardly achieved by other materials with high tearing energy. This comprehensive improvement of antitearing and super elasticity property was achieved by (i) a slide ring effect to dissipate energy and blunt a crack tip; (ii) straightening and reorientation of the slidable double network to deflect the advancing of a crack tip; (iii) a double network sharing the load. These results provide a novel strategy to fabricate elastic, tear-resistant soft material, which may contribute to the practical application as tear-resistant flexible electronics and irregular-shaped stretchable devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call